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Previous Space-based experiments (Wang et al. 1994a) showed that a rotating liquid
drop bifurcates into a two-lobed shape at a lower critical angular velocity, if it is
flattened acoustically by the leviating sound field. In this work, we undertake a
systematic experimental study of the effect of acoustic flattening on the rotational
bifurcation of a liquid drop. We also look into the complementary effect of rotation on
the equilibrium of an acoustically drastically flattened drop. Theoretical models are
developed for each of the two effects and then woven into a unified picture. The first
effect concerns neutral equilibrium, while the second concerns loss of equilibrium,
neither of them involving instability. The theories agree well with the experiments.

1. Introduction

The bifurcation of the equilibrium shape of a rotating drop into two and more lobes
was first observed by Plateau (1863), with a liquid drop immersed in a liquid host.
Theoretically, Chandrasekhar (1965) calculated the critical rotation rate at which an
axisymmetric drop in air or vacuum bifurcates into two lobes. Brown & Scriven (1980)
further calculated numerically the equilibrium shapes of the drop after bifurcation.
Experimentally, there have been quite a few attempts to test the theory using acoustic
levitation (King 1934). Wang et al. (1986) found that the critical rotation rate for the
two-lobed bifurcation in Spacelab 3 experiments using a three-axis acoustic chamber
was lower than expected. Biswas, Leung & Trinh (1991) found a similar discrepancy
with the theoretical prediction in a ground-based experimental study using a single-axis
acoustic levitator. Rhim, Chung & Elleman (1988) conducted such experiments using
an electrostatic levitator instead, and found close agreement with the theory. But the
use of electric charge introduces some uncertainty into the validity of the comparison.

Wang et al. (1994a) repeated the measurements in USML-1 flight experiments, using
initially spherical drops as well as those that were acoustically flattened at the poles
(Marston 1980; Trinh & Hsu 1986) before rotation. They found that the drops which
are free from flattening bifurcate at the theoretically predicted rotation rate. But the
drops which are flattened bifurcate at lower rotation rates. Hence the theory of
rotational bifurcation has been verified, and the previous discrepancy with the theory
explained as due to the flattening.

The question is : how does flattening affect bifurcation? A better understanding of
this and related phenomena can contribute to the non-contact techniques for
measuring surface tensions (Elleman et al. 1985). But a ground-based experiment
(Biswas et al. 1991) cannot clearly answer this question. According to a remark by
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Wang et al. (1994a), gravity, though small compared with surface tension in the case
of small drops, can tip the delicate balance between rotation and surface tension near
the bifurcation point. Consequently the drop tends to be spread more horizontally and
to become asymmetrical about its equatorial plane as a result of gravity, leading to
biased results. This accounts for the difference between the Space-based data of Wang
et al. (1994a) and the ground-based data of Biswas et al. (1991). Furthermore, there
are always the spatial and temporal limitations in a ground-based study that can be
overcome in the microgravity environment of Space, as large drops can be used there.
The study of the shift in the bifurcation point due to acoustic flattening is one of the
objectives of the recent USML-2 flight experiments.

We are also interested in the complementary effect of rotation on the equilibrium of
a drastically flattened drop. It is known that when a drop in air is levitated in a sound
field, it is flattened by the acoustic radiation pressure (Marston 1980). The flattening
increases with the sound intensity up to a point. Beyond this point, flattening increases
with decreasing sound intensity, if the latter can occur. Otherwise, the flattened drop
loses its equilibrium, expands horizontally, and eventually shatters, being torn apart by
the acoustic suction stress at its equator (Lee, Anilkumar & Wang 1991, 1994;
Anilkumar, Lee & Wang 1993; Shi & Apfel 1995). The breakup is a case of ‘ loss of
equilibrium,’ which means that the equilibrium simply ceases to exist when the system
crosses a certain threshold. We have avoided the word ‘ instability,’ which means that
an equilibrium basically exists, but it is unstable to certain disturbances.

The purpose of the present work is to study the effect of flattening on the two-lobed
bifurcation phenomenon, as well as the effect of rotation on the equilibrium of a
flattened drop. Data have been taken systematically in the USML-2 experiments, using
drops that were deliberately flattened before rotation was imposed.

Theoretically, the two problems have to be handled differently. The first problem is
the effect of acoustic flattening on the rotational two-lobed bifurcation of a drop. The
flattening will be treated as a perturbation. The second problem is the effect of rotation
on the axisymmetric equilibrium of an acoustically drastically flattened drop. The case
of a rotating drop without acoustics has been thoroughly studied by Ross (1968). Our
problem including acoustics will be treated numerically without approximation by
using a boundary integral technique (Lee et al. 1994). At the end the two problems will
be put together to give a unified picture, to compare with the experiments.

2. Experimental procedure

The apparatus in USML-2 is the same Drop Physics Module (DPM) used in
USML-1, where USML stands for United States Microgravity Laboratory. Since it
has been described previously by Wang et al. (1994a), we shall not repeat the
description here. But let us explain briefly the acoustics involved.

Before a drop is deployed, there are three plane standing sound waves along the x-,
y- and z-directions of the acoustic chamber. After a drop is deployed, if the drop is
small in comparison with the dimensions of the chamber, each sound wave is perturbed
by a wavelet scattered from the drop surface to the surroundings with little echo (see
Leung et al. 1982, for example). The chamber dimension, and therefore the acoustic
frequency, in the z-direction is different from those in the x- and y-directions. Thus on
the average, the z-wave is not coupled to the x- and y-waves. But the latter are coupled
with each other to impose an acoustic torque along the z-direction (Busse & Wang
1981), as well as an acoustic radiation potential in the (x, y)-plane (Lee & Wang 1988)
on the drop, both depending on the amplitudes of and the phase difference between the
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ν (cSt) ρ (gm cm−$) σ (dyn cm−")

Session 1 100 0±962 20±9³0±2
Session 2 350 0±966 21±1³0±2
Session 3 1000 0±968 21±1³0±2

T 1. Properties of the liquids used in the experiments at 25 °C, where the values of ν are nominal
values provided by the manufacturer, those of ρ are measured from retained samples of the flight
liquids, and those of σ are measured from leftover samples of the flight liquids.

Drop g Volume (cm$) α Run temp (°C) Flattening (%) Ω!
c

Session 1
1 3±00³0±05 0±19 25±0 C 0 0±557*
2 3±14³0±05 0±19 25±5 35³2±0 0±448*
3 1±01³0±02 0±13 25±5 18³1±5 0±511*
4 0±92³0±015 0±12 25±5 182³6±0 0±118**
5 2±00³0±02 0±16 26±3 146³5±0 0±165**

Session 2
1 3±04³0±03 0±19 19±6 C 0 0±565*

20±8 19³0±7 0±492*
21±0 208³6±0 0±0**

2 2±80³0±03 0±18 22±5 120³4±0 0±200**
Session 3

1 1±31³0±02 0±14 21±0 C 0 0±563*
22±1 C 0 0±564*
22±5 7±5³1±0 0±536*

2 1±54³0±02 0±15 23±0 28±5³1±3 0±470*
23±3 102³3±0 0±244***

T 2. Experimental data, where * signifies two-lobed bifurcation, ** signifies axisymmetric loss
of equilibrium, and *** signifies axisymmetric loss of equilibrium after a failed attempt at bifurcation.

two waves. Drop rotation is effected along the z-direction by using the torque. The
drop is levitated (King 1934) and deformed (Marston 1980) by the sum of the radiation
pressure from the z-wave and that from the coupling of the x- and y-waves.

However, acoustic field measurements are not directly used in the data analysis for
the following reasons. First, the sound pressure level picked up by each microphone is
the combined sound pressure level of more than one wave, such that the amplitude of
each wave cannot be evaluated with high accuracy. Secondly, in the idealized situation
of the theory, the drop is flattened by a single plane wave. In the experiment, all of the
x-, y- and z-waves are needed in practice to keep the drop in position. While it is mainly
the z-wave that does the flattening, all three waves inevitably contribute to the
deformation of the drop. In order to compare with theory, we have to talk about a
single z-wave that is equivalent to the three waves, in the sense that it can give the same
deformation. The frequency of the equivalent z-wave is taken as that of the original z-
wave, and its amplitude is inferred indirectly from the deformation of the drop.

The experiments were conducted using Dow Corning 200 series silicone oils, with
drops of volumes from 1 to 3 cm$, and viscosities 100, 350 and 1000 cSt (table 1). High
viscosities were chosen in order to reduce the relaxation times of the drops between
spin-up and equilibrium. Various viscosities were used in order to observe the effects
of viscosity on the fission process. But the critical rotation rate at which bifurcation or
loss of equilibrium occurs is associated with equilibrium, and is therefore independent
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of viscosity. The silicone oils of various viscosities vary little in surface tension and
density. An advantage of using silicone oils is that their surface tensions are insensitive
to contamination, if there is any.

The drops were deployed using flat-tip injectors (Wang et al. 1994a). Each drop was
acoustically flattened first, before an acoustic torque was imposed to spin up the drop
up to and beyond bifurcation. Flattening is measured by (a}b®1)¬100%, where a
and b are respectively the equatorial and polar radii of the drop. The spin-up was slow
enough to ensure that the drop was close to rigid-body rotation at all times. Tracer
particles were used to follow the rotation of the drops, such that a solid-body rotation
could be visually recognized when it occurred, and the resulting rotation rate could be
measured. Pliolite tracer particles (Goodyear Chemical Co.), about 50–100 µm in size,
were mixed with the liquids during preparation.

The experiments were performed in three sessions (tables 1 and 2), corresponding to
the three values of viscosity mentioned above. In each run, the initially flattened drop
was spun up until one of the following two things happened: the drop bifurcates from
an axisymmetric shape into a two-lobed equilibrium shape, which, upon further spin-
up, eventually becomes unstable and fissions into two drops (Chandrasekhar 1965;
Brown & Scriven 1980) ; the drop retains its axisymmetric shape as it becomes more
flattened, until it loses equilibrium, expands horizontally and shatters (Lee et al. 1991,
1994; Anilkumar et al. 1993; Shi & Apfel 1995).

We also wanted to look for the effects of viscosity on the fission process, but due to
the difficulties involved in dislodging high-viscosity drops from the injector tips, we
were able to deploy drops up to about 1000 cSt only.

All data analysis is done using video tape with information available at 60 fields}s.
Only drops whose volumes, and whose flattening before rotation, can be estimated
accurately are selected for presentation. This requirement means that the selected
drops did not have any uncontrolled rotation before the torque was turned on. The
uncontrolled rotation often happens to a sample in acoustic levitation (e.g. see Wang
et al. 1994b ; Wang, Anilkumar & Lee 1996), but its nature has not been understood.

Let ρ and σ be the density and surface tension of the liquid, and R
!
be the spherical

radius of the drop. The size of the drop is specified by α¯kR
!
, where k is the

wavenumber (¯ 2π}wavelength of the z-wave, where the wavelength¯ 2¬chamber
height¯ 30±48 cm) of the sound wave that vibrates along the axis of symmetry of the
drop. The quadrupole oscillation frequency of the drop (Lamb 1945) is given by ω

!
¯

(8σ}ρR$

!
)"/#.

As shown in table 2, the values of the drop size α are all small enough that none of
these drops significantly affected the sound field (Leung et al. 1982). It follows that the
sound amplitude can be considered as constant while the drop went through the spin-
up and shape changes. That is also why we consider the axisymmetric loss of
equilibrium of a drop through horizontal expansion, but not the possibility that the
drop can stay in equilibrium by reducing the sound intensity through a resonant
frequency shift (Lee et al. 1991, 1994; Anilkumar et al. 1993).

The surface tension for each drop is corrected by ®0±08 dyn cm−" °C−", taking into
account the temperature during a run, which typically lasted for a few minutes during
which the temperature was essentially constant. The measurement errors for the
rotation rate Ω and linear dimensions are estimated to be less than 0±5%. The
uncertainty in the estimation for the normalized rotation rate, given by Ω*¯Ω}ω

!
, is

about 2%, taking into consideration the systematic error in the estimation of ω
!

for
each drop (see Wang et al. 1994a). In the plots that follow, whenever the errors are
smaller then the plot symbols, they have not been separately indicated.
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3. Experimental results and discussion

For each experiment, the drop size, temperature during the run, the degree of
flattening imposed on the initially non-rotating drop, and the clinical rotation rate for
breakup are listed in table 2. The experiments are classified into three sessions
according to the viscosities of the oils to be used. As we have explained earlier, the
breakup can occur through fission at the end of a two-lobed bifurcation, or through
the loss of equilibrium of an axisymmetrically flattened drop, depending on the relative
strengths of rotation and acoustic flattening.

As we have also noted earlier, the drops we used were small enough, such that the
sound intensity that was used to initially flatten a drop can be considered as constant
throughout the deformation process of the drop. Hence, there is a one-to-one
correspondence between the ‘ initial flattening’ and the constant sound intensity. When
we refer to ‘ initial flattening’ in the following, we do not mean that there is no acoustic
flattening after rotation starts. When the drop rotates, the constant sound intensity is
still there, but the flattening is due to both acoustics and rotation. The contribution to
flattening from the constant sound intensity is not constant but depends on the shape
of the drop.

Let us define R* as the maximum equatorial radius R scaled by R
!
, for either the

axisymmetric or two-lobed shape. One way to present the evolution of a drop is to plot
R* versus the normalized rotation rate Ω*, for a given initial flattening. Note that
dynamic processes, including the fission of the drop beyond two-lobed bifurcation, and
the horizontal expansion of the drop after axisymmetric loss of equilibrium, cannot
strictly be characterized by these two parameters. But our primary interest is
equilibrium. Therefore, dynamic processes branching out from equilibrium will be
conveniently and loosely considered as extensions of the equilibrium, and thereby
described in terms of the same parameters.

In figure 1 we show such a plot for session 1 experiments with 100 cSt oil. For
reference purposes, we have also drawn the (solid) theoretical curve describing the
deformation of an initially spherical drop due to rotation alone (Chandrasekhar 1965;
Brown & Scriven 1980). The curve goes from left to right, representing the deformed
but axisymmetric equilibrium shape of the drop. But it turns upward and backward at
the critical rotation rate Ω$

c
¯ 0±56, leading to the familiar bifurcation branch for the

two-lobed equilibrium shape of the drop (Brown & Scriven 1980).
For a flattened drop, the experimental curve that goes from left to right similarly

represents its axisymmetric deformation due to increasing rotation rate. As expected,
this part of the curve shifts upward from its counterpart in the reference curve, as the
initial flattening increases.

For each flattened drop, the curve similarly turns backward and upward from the
axisymmetric curve, at a critical rotation rate depending on the initial flattening. But
the nature of the transition also depends on the initial flattening as follows. The
experimental data are classified into two clusters : the one on the right-hand side leads
to two-lobed bifurcation, while the one on the left-hand side leads to axisymmetric loss
of equilibrium.

From the cluster on the right-hand side, it is clear that the critical rotation rate for
bifurcation decreases with initial flattening. The bifurcation branch also rises more
vertically and crosses the reference curve at some point. The greater the initial
flattening is, the more pronounced these tendencies are. The reason is simply that each
lobe of the two-lobed shape is flattened by the acoustic radiation pressure from an
almost spherical shape into an approximately oblate shape, with the axis of symmetry
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F 1. R* versus Ω* for 100 cSt drops from session 1. The solid curve is from Brown & Scriven
(1980), in which the lower part corresponds to an axisymmetric drop before bifurcation, and the
upper part corresponds to the same drop adopting a two-lobed equilibrium shape after bifurcation.
The data points on the right corresponds to two-lobed bifurcation perturbed by acoustic flattening.
The data points on the left represents loss of axisymmetric equilibrium under the influence of
rotation. The dashed lines represent the theories in the present work (the dashed horizontal line
corresponds to curve ed and the dashed slanted curve corresponds to ba in figure 12).
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F 2. R* versus Ω* for 350 cSt from session 2. The description is similar to that for figure 1.

being parallel to the axis of rotation, effectively increasing R*. The neck between the
two lobes is relatively narrow, such that the effect of the acoustic radiation stress is less
important there. The two-lobed bifurcation path ends at the fission point, beyond
which the drop follows the curve that approximately obeys Ω*R*#¯ constant. This
means conservation of angular momentum, considering the two lobes as two spherical
masses flying off tangentially after the ligament between them can no longer hold them
together in equilibrium. The curve ends at some R* where the ligament between the two
lobes breaks.
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F 3. R* versus Ω* for 1000 cSt drops from session 3. The 102% flattening drop tries but fails
to bifurcate at Ω*¯ 0±25, retains its axisymmetric shape, picks up more angular velocity, and finally
loses axisymmetric equilibrium at around Ω*¯ 0±32. The other drops all bifurcate. The dashed lines
have been explained in the caption of figure 1.

For the cluster on the left-hand side, where the drops suffer from greater initial
flattening, there is no bifurcation: a drop simply loses equilibrium beyond the critical
rotation rate. The curve that branches out from the axisymmetric curve represents not
equilibrium, but the dynamic process of axisymmetric horizontal expansion due to the
acoustic suction stress at the equator of the drop (Lee et al. 1991, 1994; Anilkumar et
al. 1993; Shi & Apfel 1995), with a little help from the centrifugal force due to the
rotation. The curve also approximately obeys Ω*R*#¯ constant, which again means
conservation of angular momentum, considering that the mass of the drop is
concentrated near the equator like a ring.

In figure 2, we plot the R*, Ω* curves for the 350 cSt drops of session 2, and can
describe them similarly to those of session 1. With the higher viscosity, the fission curve
can extend to higher R*, because the higher viscosity can keep the ligament between
the two lobes intact for a bit longer before breaking.

In figure 3 we show the data for the 1000 cSt drops of session 3. Some of the drops
were used repeatedly because they could be re-captured by the acoustic potential well
after fission, made possible by the strong viscous effect on the separation motion
between the two lobes. The drop can reach a high R* before breaking, again due to
viscosity, but with the two lobes carrying little momenta in separation because of the
heavy viscous dissipation. However, the fission curve still exhibits conservation of
angular momentum, because the viscous force is not an external force, and so it cannot
change the angular momentum.

A special feature in figure 3 is the behaviour of the 102% flattening drop. The drop
lies between the regime where the drop bifurcates and that where the drop loses
axisymmetric equilibrium. At the rotation rate of about 0±25, it tries to bifurcate, but
fails to do so, retaining its axisymmetric shape, and loses equilibrium at a higher
rotation rate.

The main results of the experiments are shown in figure 4, where we plot the data,
from both USML-1 and USML-2, in the form of critical rotation rate versus initial
acoustic flattening. The points stand for drops of different sizes (table 2), but the values
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F 4. Critical rotation rate versus flattening. The drop sizes can be found in table 2, and can be
considered to be asymptotically small, acoustically speaking. The cluster on the left-hand end
represents two-lobed bifurcation perturbed by flattening. The other data points to the right represent
axisymmetric loss of equilibrium under the influence of rotation. The 102% drop in figure 3 is
highlighted here by an arrow. The dashed lines represent the theories in the present work (see figure
13).

(a)

(b)

F 5. Photographs showing (from left to right) the top views of a drop undergoing (a) rotation
bifurcation, and (b) axisymmetric loss of equilibrium. Sequence (a) represents equilibrium shapes at
slowly increasing angular momentum. Sequence (b) is a dynamic process that takes place suddenly
and rapidly beyond a critical point.

of α are small enough such that the asymptotical limit αU 0 can be considered. The
cluster of data on the left-hand end represents two-lobed bifurcation perturbed by
acoustic flattening. The other data further to the right represent loss of axisymmetric
equilibrium under the influence of rotation.

In figure 5(a), we show a sequence of photographs of the top views of a drop
undergoing rotational bifurcation at slowly increasing angular momentum. In figure
5(b), we show a similar sequence for a drop undergoing sudden axisymmetric loss of
equilibrium.
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4. Rotational bifurcation of a slightly acoustically flattened drop

4.1. Definition of the problem

Consider a small liquid drop levitated at the pressure node of a plane standing sound
wave, in the absence of gravity. Let the drop rotate around the axis that is parallel to
the direction of the sound vibration. The problem in this study is to calculate the two-
lobed bifurcation of the drop, if it is slightly flattened by the acoustic radiation pressure
from the sound field.

Inevitably, the problem involves a preliminary calculation of the bifurcation point
without the sound wave, but this point has already been calculated accurately a few
times (Chandrasekhar 1965; Brown & Scriven 1980; Luyten & Callebaut 1983).
Considering also that the focus of the present study is the effects of the acoustic
perturbation on the bifurcation of the drop, we choose to derive the bifurcation point
in a lowest-order approximation. For the unperturbed bifurcation point, the approach
is less accurate. But the approach allows easy incorporation of acoustics later.
Furthermore, this approach will prove to be adequate for the correction to the
bifurcation point due to acoustics. It also provides a clear physical picture for the
whole phenomenon.

4.2. Axisymmetric equilibrium

Let us consider a drop of radius R
!
, density ρ, and surface tension σ, rotating along

the z-axis with angular velocity Ω, in the absence of acoustics. The hydrostatic pressure
inside the drop is given in spherical coordinates by

P¯P
!
"

#
ρΩ#r# sin#θ, (4.1)

where P
!
is constant, r is the radial coordinate, and θ is the polar angle. Let the drop

shape be described by
f(θ)¯R

!
[1®γP

#
(θ)], (4.2)

where γ is assumed to be small, and P
n

for n¯ 1, 2, 3,… are Legendre polynomials,
neglecting terms of O(γ#) inside the square bracket. For equilibrium, the normal stress
difference across the drop surface has to be balanced by surface tension. By setting the
ambient pressure to zero, this condition leads to the Young–Laplace equation

P¯σ¡[n, (4.3)

where n is the normal unit vector pointing away from the drop surface. Substituting
(4.1) and (4.2) into (4.3) we have

γ¯ #

$
Ω*#, (4.4)

where Ω*¯ (ρΩ#R$

!
}8σ)"/# is the normalized rotation rate, ignoring terms of O(Ω*%) in

the lowest-order approximation.

4.3. Energy principle

Let us now look for the situation in which the axisymmetric drop can stay in neutral
equilibrium, when its surface suffers from a non-axisymmetric two-lobed perturbation
at a constant angular momentum L. In other words, we want to find the two-lobed
bifurcation point, at which the perturbation does not oscillate or grow in time.

We need to find the point at which the second variation of the energy of the drop
with respect to the perturbation is zero. Since the perturbation is imposed at constant
angular momentum, the energy to be considered should be identified with the
Hamiltonian of the drop. In general, if the axisymmetric or non-axisymmetric drop is
in equilibrium, its energy is given by

E¯E
s
E

r
, (4.5)
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where E
s
is its surface energy and E

r
is its rotational energy. The surface energy is given

by

E
s
¯σ&

S

da, (4.6)

in which the integral is the area of the drop surface S. The rotational energy is given
by

E
r
¯

L#

2I
, (4.7)

in which

I¯&
V

ρr# sin# θdx (4.8)

is the moment of inertia of the drop, the integration being over its volume V. The
angular velocity is given by Ω¯L}I.

Let the drop start with an axisymmetric shape characterized by L¯L
c
and I¯ I

c
,

where the subscript c represents the critical axisymmetric state at which bifurcation is
expected. Then Ω has the value of Ω

c
¯L

c
}I

c
when bifurcation occurs. With the

perturbation, I changes by δI, Ω changes by δQ, E
s
changes by δE

s
, E

r
changes by δE

r
,

and E changes by δE, while L remains constant. The constant of conservation of
angular momentum for the perturbation requires that

δL¯ I
c
δΩΩ

c
δI¯ 0. (4.9)

From (4.7) and (4.9), the change in rotational energy is

δE
r
¯®"

#
Ω#

c
δI. (4.10)

In order for the shape to stay in equilibrium while perturbed

δE¯ δE
s
δE

r
¯ 0. (4.11)

4.4. Two-lobed bifurcation

Let the shape of the perturbed drop be described by

F(θ,φ)¯R[1®(γδγ)P
#
(θ)εP#

#
(θ) cos 2φ], (4.12)

where φ is the azimuthal angle, ε' 1 represents the perturbation, P#

#
¯ 3 sin# θ is an

associated Legendre function that describes the two-lobed feature, and δγ is the
correction in γ due to the introduction of ε for the following reason. We have neglected
terms of O(γ#) and O(ε#) inside the square bracket. When ε is applied, the moment of
inertia I changes by δI, such that according to (4.9), the angular velocity Ω changes by
δΩ. It follows from (4.4) that γ also changes by δγ.

The quantity I
c
for the unperturbed drop is determined from (4.8) and (4.2) :

I
c
¯

8πρR&

!

15
(1γ), (4.13)

neglecting terms of O(γ#) inside the bracket. The quantity I for the perturbed drop is
similarly determined from (4.8) and (4.12). Comparing the two results, we find

δI¯
8πρR&

!

15 0δγ
132

7
ε#1 . (4.14)
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Putting (4.13) and (4.14) into (4.9), using (4.4), and rearranging, we find

δΩ

Ω
c

¯
δγ

2γ
¯®

132

7
ε# (4.15)

to the lowest-order approximation in γ.
As seen in (4.10), δE

r
is proportional to Ω#

c
, and therefore according to (4.4) is

proportional to γ. Substituting (4.14) into (4.10), and using δγCγε# from (4.15), we
obtain

δE
r
¯ 4πR#

!
σ 0®352

35
Ω$#

c
ε#1 , (4.16)

where Ω$
c
¯ (ρΩ#

c
R$

!
}8σ)"/# is the normalized critical rotation rate, to the lowest-order

approximation in γ.
The surface energy for the unperturbed drop is determined from (4.2) and (4.6). The

surface energy for the perturbed drop is similarly determined from (4.12) and (4.6).
Comparing the two results, we find the change in surface energy as

δE
s
¯ 4πR#

!
σ 024

5
ε#1 , (4.17)

to the lowest-order approximation in γ.
Substituting (4.16) and (4.17) into (4.11), we have the total change in energy as

δE¯ 4πR#

!
σ 9024

5
®

352

35
Ω$#

c 1 ε#:¯ 0. (4.18)

On the right-hand side of the first equality, the coefficient of ε# is the second variation
of E with respect to the perturbation. For bifurcation, we use the second equality to
set the coefficient to zero, such that

Ω$
c
¯'21

44
¯ 0±69, (4.19)

with an error of O(γ). If the rotation rate is lower, δE is positive such that the
perturbation is oscillatory. If the rotation rate is higher, then δE is negative and the
perturbation grows in time.

This reproduces the essential physics of the bifurcation problem. However, compared
with the known accurate value of 0±56 for Ω$

c
, our value is too high by 23%. Given the

extent of our simplification, the inaccuracy is not surprising. But recall that our real
objective is to study the effects of slight acoustic flattening on bifurcation. We shall
therefore look for a relative shift in the bifurcation point from the known accurate
unperturbed value of Ω$

c
rather than its absolute value.

4.5. Axisymmetric equilibrium of a rotating drop slightly flattened by acoustics

The sound wave under consideration has a wavelength that is much longer than the
dimension of the drop, and a frequency that is much larger than the capillary frequency
of the drop. The sound wave does not interact with the drop directly at the first order,
since the drop cannot respond to the acoustic time scale, but it can affect the drop
indirectly through its steady radiation pressure.

In a gas medium of density ρ
!

and speed of sound c
!
, let the incident acoustic

pressure be given by p!
i
¯A sin(kz) exp(®iωt), where A is the amplitude, k is the

wavenumber, z is the position relative to the pressure node, ω¯kc
!

is the frequency
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in rad s−", and t is time. Let us consider the long-wave limit α¯kR
!
' 1 and let the

drop be at the pressure node. If the drop is non-rotating, it is flattened by the acoustic
radiation pressure (Marston 1980) such that its shape becomes f(θ)¯R

!
[1®βP

#
(θ)],

where β¯ 3B
a
}32' 1, in which B

a
¯A#R

!
}σρ

!
c#
!

is the acoustic Bond number,
neglecting α#.

If the drop is rotating, then in place of (4.2), we have a superposition of small
deformations due to rotation and acoustics :

f(θ)¯R[1®(γβ)P
#
(θ)]. (4.20)

In (4.20), β represents the radiation pressure on a spherical drop. Actually, the sound
field should be distorted through scattering by the rotational deformation of the drop,
such that β should have a correction. But in this calculation, acoustics is considered as
a perturbation, such that the correction due to the rotational deformation is a
perturbation of the perturbation, and is thus neglected.

4.6. Acoustic radiation pressure on a two-lobed drop

For the sound field, while the axisymmetric deformation of the drop due to rotation
is neglected as we have just said, the non-axisymmetric two-lobed deformation at
bifurcation should be considered, for reasons which will become clear in the next
subsection. Here, we shall calculate the scattered field from the slightly two-lobed
shape and the associated radiation pressure. For the present purpose, the two-lobed
shape is accordingly written as a simpler version of (4.12) :

G(θ,φ)¯R[1εP#

#
(θ) cos 2φ]. (4.21)

Let the incident wave be p!
i
¯ p

i
exp(®iωt), where p

i
¯A sin(kz). Let the scattered

wave be p!
s
¯ p

s
exp(®iωt). The total wave p«¯ p!

i
p!

s
¯ p exp(®iωt), satisfies the

Helmholtz equation ~#pk#p¯ 0, and the boundary condition ¥p}¥n¯ 0 on the drop
surface described by (4.21). The particle velocity is given by u«¯u exp(®iωt), where
u¯ (iωρ

!
)−"¡p. The radiation pressure on the drop surface is given by (King 1934)

P
a
¯

©p«#ª
2ρ

!
c#
!

®
ρ
!

2
©u«[u«ª, (4.22)

where © ª means the time average over an acoustic cycle.
We shall consider a perturbation about the spherical surface r¯R

!
instead of

dealing directly with the flattened surface. We shall consider the wave scattering from
the spherical surface, subjected to a modified boundary condition obtained by
expanding the original boundary condition in ε. The boundary condition is thus
rewritten as

0¥ps

¥r 1
r=R!

0¥#ps

¥r# 1
r=R!

εR
!
P#

#
cos 2φ¯®0¥pi

¥r 1
r=R!

®0¥#pi

¥r# 1
r=R!

εR
!
P#

#
cos 2φ. (4.23)

The incident wave is expanded as (Morse & Feshbach 1953)

p
i
¯ 3«

¢

n="

Ain−"(2n1) j
n
(kr)P

n
(θ), (4.24)

where the j
n

are spherical Bessel functions, and 3« means that the summation is over
odd integers, as a result of the drop sitting at z¯ 0. Let the scattered wave be written
as

p
s
¯ 3

¢

n=!

A
n
h(")
n

(kr)P
n
(θ)ε 93

¢

j=#

C
j
h(")
j

(kr)P#
j
(θ): cos 2φ, (4.25)
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where the h(")
n

are spherical Hankel functions of the first kind, and the second term on
the right is a summation of all the modes that have the factor cos(2φ), to conform to
the two-lobed shape in (4.21).

Let us substitute (4.24) and (4.25) into (4.23) and equate equal powers of ε. At O(ε!),
we have the incident wave plus the wave scattered by the spherical drop, and at O(ε"),
we have the additional wave scattered by the two-lobed perturbation. The total
acoustic pressure on the spherical surface is, to the lowest order in kR

!
,

(p)
r=R!

¯
3

2
(kR

!
)A cos θ

3

20
(kR

!
) εAP#

$
(θ) cos 2φ. (4.26)

The component of the particle velocity in the θ-direction is given by

(uθ)r=R!

¯
3i

2

A

ρ
!
c
!

[sin θ®3ε sin θP
#
(θ) cos 2φ]. (4.27)

According to (4.22), both p and uθ lead to contributions of O(ε) to the radiation
pressure. The velocity component in the φ-direction is of O(ε). The normal velocity on
the spherical surface, according to (4.23), is of O(ε). These two, according to (4.22),
lead to contributions of O(ε#) to the radiation pressure and are neglected. The radiation
pressure is then

P
a
¯

9

16

A#

ρ
!
c#
!

[®sin# θ6ε sin# θP
#
(θ) cos 2φ]. (4.28)

It can be checked that the first term on the right-hand side leads to the acoustic
deformation β, if we balance the axisymmetric part of the radiation pressure with
surface tension in a Young–Laplace equation.

4.7. Effects of acoustics on a two-lobed bifurcation

According to (4.20), the deformations γ due to rotation and β due to acoustics are
simply additive at the lowest order. Since the changes in rotational and surface
energies, as given at the lowest order of γ by (4.16) and (4.17), respectively, do not
depend on γ, the acoustic effect does not appear in the energy changes at this order
either. Hence if (4.11) or (4.18) is still valid, then at the lowest order of γ, acoustics does
not affect the two-lobed bifurcation. We shall show below that acoustics should be
included in the energy equation.

Everything that we have derived is still valid at the lowest order of γ, except for
(4.11), which should be replaced by

δE¯ δE
s
δE

r
δE

a
¯ 0, (4.29)

where δE
a

is the work done by the drop against the radiation pressure in a shape
perturbation. Equation (4.18) will be changed accordingly later. Since we are only
concerned with the axisymmetric drop at the point of two-lobed bifurcation, the drop
cannot suffer from an external torque due to acoustics, but it does experience push or
pull from the radiation pressure when it changes shape, which means that it has to do
work at its surface.

The work done is the product of the radiation pressure and the surface displacement,
integrated over the drop surface. According to (4.21) this is

δE
a
¯&

S

ds P
a
(εR

!
P#

#
cos 2φ). (4.30)
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According to (4.30), it is clear that only the non-axisymmetric part of the radiation
pressure in (4.28) contributes, which is why we need to consider scattering by the two-
lobed shape in the previous subsection. Substituting (4.28) into (4.30) we obtain

δE
a
¯ 4πR#

!
σ 0®27

35
B

a
ε#1 . (4.31)

Putting (4.16), (4.17) and (4.31) into (4.29), we have approximately, in place of (4.19)

Ω$
c,a

¯'21

44 01®
9

112
B

a1 . (4.32)

Defining ∆Ω*¯Ω$
c,a

®Ω$
c
, we have from (4.32) and (4.19),

∆Ω*

Ω$
c

¯®
9

112
B

a
. (4.33)

Let a and b be respectively the equatorial and polar radius of the acoustically flattened
drop before rotation, such that a¯R(1β}2) and b¯R(1®β). The acoustic
deformation as defined by Wang et al. (1994a) is a}b®1, which is approximately 3β}2
for small β. Hence by relating B

a
to β and then to the acoustic deformation, we have

more conveniently,

∆Ω*

Ω$
c

¯®
4

7 0
a

b
®11 , (4.34)

which does not depend on the accurate value of Ω$
c
.

4.8. Discussion

According to the speculation of Wang et al. (1994a), since the drop at the bifurcation
point is still axisymmetric, the radiation pressure cannot exert a torque on it, so that
the critical angular momentum at which bifurcation occurs is not expected to be
affected by the sound field. But when the drop is flattened by acoustics axisym-
metrically, its moment of inertia increases. Therefore, with the same critical angular
momentum, the critical rotation rate at which bifurcation occurs decreases.

Let us re-examine this previous hypothesis in view of our present result. First, by
replacing γ with γβ in (4.13) in the same way that (4.2) is replaced by (4.20), and
using β¯ 3B

a
}32, the moment of inertia I

c
of the axisymmetric drop at the bifurcation

point without acoustics is shifted by ∆I¯ (1}20)πρR&

!
B

a
due to acoustics. The

angular momentum L
c
¯ I

c
Ω

c
at the bifurcation point without acoustics is shifted by

∆L¯Ω
c
∆II

c
∆Ω due to acoustics, where ∆Ω is the dimensional form of ∆Ω* in

(4.33). Using the above expression for ∆I, (4.13) for I
c
, and (4.33) for ∆Ω, we find that

∆L}L
c
¯®0±0092B

a
. Since ∆Ω}Ω¯®0±080B

a
according to (4.33), the relative shift in

the critical angular momentum is much smaller. The critical angular momentum is thus
essentially unaffected by acoustics, as the previous hypothesis assumes.

It is still true that no external torque is involved in the shift in the critical rotation
rate. But the previously neglected external normal forces does play a role, and the key
to the understanding of the phenomenon lies not in the angular momentum but in the
energy. According to (4.28), around the equator of the drop, the non-axisymmetric
part of the acoustic radiation pressure, which contributes to the energy balance, is
negative where the surface is displaced outward and positive where the surface is
displaced inward. (This is akin to the situation in which the radiation pressure at the
equator of an acoustically flattened drop becomes more negative, as the radius of
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curvature at the equator becomes smaller (Lee et al. 1991).) It follows that the work
done by the surface is negative. Consequently, the radiation pressure makes it easier for
the drop to become more two-lobed, allowing bifurcation to occur at a lower rotation
rate.

The theory is for a single acoustic wave, whereas in the experiments there are three
waves in three orthogonal directions. Each of these waves exerts an acoustic radiation
stress on the drop. In order to relate the theory to experiments, it is necessary to
consider a single effective wave in the z-direction, giving the drop a net deformation of
a}b. Therefore (4.34) should in practice be used instead of (4.33).

However, this argument is not applicable for the case of a single acoustic wave. It
is then necessary to justify the choice between (4.33) and (4.34). For small acoustic
disturbance, the two equations are equivalent. But for larger acoustic disturbance,
which we intend to extrapolate our result to, they do deviate from each other. In
principle, of course, one can determine which equation is more valid by carrying the
calculation to higher orders of the acoustic perturbation. But we choose to make an
educated guess as follows.

The parameter B
a

in (4.33) is akin to the radiation stress and thus the force balance
at the surface. The parameter (a}b®1) in (4.34) represents the surface deformation and
hence, in the case of neutral stability, is more akin to the energy of the rigidly rotating
system. As indicated in (4.29), and as we have discussed above, this problem is about
energy, and so the choice of (4.34) is more appropriate.

5. The effects of rotation on an acoustically drastically flattened drop

5.1. Definition of the problem

Let us consider the same incident sound wave as in §4. Only axisymmetric scattering
is considered this time. When the drop is levitated in air by the acoustic radiation
pressure of the wave (King 1934), it is also flattened in the axial direction by the
radiation pressure (Marston 1980). The degree of flattening can be measured by
R*¯R}R

!
, where R is the equatorial radius of the drop after it has been flattened.

The acoustic radiation pressure is characterized by the acoustic Bond number B
a
¯

A#R
!
}σρ

!
c#
!
. For small deformations (Marston 1980), B

a
increases with R*. For larger

deformations (Lee et al. 1991, 1994; Anilkumar et al. 1993; Shi & Apfel 1995), B
a
rises

to a peak value that depends on the drop size α¯kR
!
, at R*E 1±45. At the peak, at

the equator of the flattened drop where the curvature is high there is a delicate balance
between surface tension which pulls inward, and the acoustic radiation stress which
pulls outward. If the sound intensity is increased beyond this critical point, the drop
cannot stay in equilibrium and has to expand horizontally and eventually shatter. But
the sound intensity can in fact decrease beyond this point, due to the detuning and
consequent power loss of the acoustic levitator, if the drop with its flattened shape is
large enough compared with the acoustic wavelength to block the acoustic path
significantly (Leung et al. 1982). If that is the case, then beyond this point the drop can
be further flattened in decreasing sound intensity, such that B

a
decreases with R* (Lee

et al. 1991, 1994; Anilkumar et al. 1993). In this study, we are only concerned with the
rising part of the B

a
versus R* curve, since small drops in a large levitator cannot

present a significant blockage, and thus cannot survive beyond the peak of the B
a
,R*

curve without shattering there.
The ground-based experimental B

a
,R* curves (Anilkumar et al. 1993) are

consistently somewhat above the theoretically predicted ones (Lee et al. 1994). In a
ground-based experiment, where only small drops can be used, a higher sound pressure
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level is needed to deform a drop than in Space. Such a sound wave has many
harmonics, but only the lowest harmonics are effective in deforming the drop. These
lowest harmonics contribute to an effective sound pressure level that is lower than the
total one. Thus the discrepancy between theory and experiment is due to relating B

a

to the total sound pressure level rather than the effective one. Moreover, the ground-
based experiments were conducted using a single-axis ultrasonic levitator, in which the
sound field falls off laterally, and the drop is levitated slightly below a pressure node
due to gravity. It has been speculated (Lee et al. 1994) that these also contribute to the
differences between the experimental B

a
,R* curves and the theoretically predicted

ones. The USML-2 experiments using a three-axis acoustic chamber have the
advantage over the ground-based experiments that the sound field does not fall off
laterally, and that there is no gravity.

In order to facilitate a better comparison between theory and experiment, we shall
introduce rotation into a previous boundary integral formulation for the flattened drop
(Lee et al. 1994). We shall numerically calculate the effects of the rotation on the
stability of the flattened drop. No approximation is needed, except that the possibility
for the two-lobed bifurcation of the drop at a critical rotation rate (Brown & Scriven
1980) is neglected. The latter will be taken into consideration when we put the two
problems together in comparison with experiment.

Therefore in this part, we want to calculate the equilibrium shape of the drop under
the influence of the acoustic radiation pressure, at a sound intensity ranging from zero
to the maximum value beyond which the drop cannot stay in equilibrium, given a
rotation rate Ω for the drop. In other words, we want to find the shift of the B

a
,R*

curve as a function of the rotation rate.

5.2. Formulation

In the absence of gravity, the drop is located at z¯ 0. Let the total sound field be
represented by the acoustic pressure p«¯Re[p(x) exp(®iωt)], where p is real, depending
only on the position x, and satisfying the Helmholtz equation ~#pk#p¯ 0. The wave
consists of the incident wave p

i
¯A sin(kz) which we have mentioned earlier, and

the scattered wave p
s
, such that p¯ p

i
p

s
. It satisfies the boundary conditions that

n[¡p¯ 0 on the drop surface, where n is the normal unit vector on the surface
pointing away from the drop, and that p

s
approaches zero at large distance from the

drop.
The sound wave depends on the drop shape, which depends on the acoustic radiation

pressure, which in turn depends on the sound wave. Hence both the sound wave and
the drop shape are parts of the solution of the problem. Lee et al. (1994) dealt with this
problem in a self-consistent way by using a boundary integral technique. It consists of
an iteration scheme in which the sound wave is calculated given the drop shape, the
drop shape is recalculated given the resulting acoustic radiation pressure, and the
sound field is recalculated given the new drop shape, and so on.

Given a drop shape, the sound field on the drop surface is given by

p
s
(x)¯

1

2π
PV&

S

dS 9ps
(y)

¥G(y®x)

¥n
G(y®x)

¥p
i
(y)

¥n : , (5.1)

where S is the surface of the drop, n is the distance along the outward-pointing unit
vector n,G(y®x)¯ exp(ikry®xr)}ry®xr is the Green’s function for the Helmholtz
equation, which has a singularity at y¯x, and PV denotes that the principal value of
the integral be taken owing to the singularity.
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The radiation pressure is given by

P
a
¯

©p«#ª
2ρ

!
c#
!

®
ρ
!
©u[uª
2

, (5.2)

where © ª denotes a time average over an acoustic cycle, and

u¯Re[¡p exp(®iωt)}iωρ
!
]

is the acoustic particle velocity. As far as the acoustic oscillation is concerned, the drop
surface can be considered as rigid, such that u only has a tangential component there.

The drop shape is determined by the Young–Laplace equation, which balances
surface tension, acoustic radiation pressure and centrifugal force :

σ¡[n¯P
I
®P

a
"

#
ρΩ#r#, (5.3)

where P
I
is the internal pressure that is uniform inside the drop. The whole calculation

is the same as that of Lee et al. (1994), except that P
I

is replaced by P
I
ρΩ#r#}2

everywhere. Specifically, the changes are made in the Young–Laplace equation (5.3),
and in the expression for P

I
in terms of the acoustic radiation stress and the curvature

of the drop at the equator (equation (15) of Lee et al. 1994).
Following Lee et al. (1994), the dimensionless forms of the equations depend on the

drop size α¯kR
!
, the acoustic Bond number B

a
¯A#R

!
}σρ

!
c#
!
, the degree of

flattening R*¯R}R
!
, and in addition, the rotational Bond number B

r
¯ ρΩ#R$

!
}σ.

5.3. Procedure and results

The detailed numerical procedure can be found in Lee et al. (1994) and will not be
described here. The first part of the procedure is to calculate the B

a
,R* curve to the

peak, for each given α which ranges from 0±01 to 1±0, and for each given B
r

which
ranges from 0 to 1±5, looking for a pattern. The typical variation of the curve with B

r

for a given α is given by figure 6, which shows a set of non-intersecting B
a
,R* curves.

It is noted that the critical value R$
cr

of R*, where the curve is maximum, is
approximately constant at about 1±45, irrespective of B

r
. But the maximum value B

a,c

of B
a

decreases with B
r
.
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Basing on this observation, the second part of the procedure is to find the variation
of B

a,c
with B

r
for each given α. The results are shown in figure 7, which plots B

a,c

versus B
r

for various values of α. It can be seen that the change ∆B
a

in B
a,c

is
proportional to B

r
for each α.

In the third part of the procedure, the fractional change is found by best-fitting each
set of data points in figure 7 with a straight line, and normalizing the change with the
unperturbed B

a,c
. We find that

∆B
a

B
a,c

¯®CB
r
, (5.4)

where the proportionality constant C is a function of the drop size α. But when C is
plotted against α in figure 8, it can be seen that C is approximately 0±21 and is
essentially independent of α.
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5.4. Discussion

We have found above that the position R$
c

of the peak of the B
a
,R* curve is

independent of the rotation rate. However, Anilkumar et al. (1993) in their ground-
based experiments found that the peak shifts slightly to higher R* with increasing
rotation rate.

It is noted that in the latter experiment, the rate of increase of sound intensity was
constant and did not slow down when the drop approached the peak of the B

a
,R*

curve. The constant increase in sound intensity is expressed by dB
a
}dt being finite,

where t is time. The peak of the B
a
,R* curve is characterized by dR*}dB

a
U¢. Since

dR*}dB
a
¯ (dR*}dt)}(dB

a
}dt), a finite dB

a
}dt means an infinite dR*}dt. A large

dR*}dt in turn means a flattening that is too fast for the viscous relaxation of the
rotation of the drop, which is estimated to take R#}ν. Thus the drop could not attain
a rigid-body rotation near the peak, as required by the theory, and the disagreement
is not surprising.

6. Unified picture and comparison with experiment

6.1. Hybrid model

From the experimental point of view, given the initial acoustic flattening of a small
drop, we want to find the critical rotation rate for bifurcation or loss of equilibrium.
This requires us to put the two theories together to form a unified picture, together with
some numerical work in interpolation.

Let us do the following calculation for α¯ 0±25, which can be considered as
asymptotically small, acoustically speaking. In figure 9, we plot B

a
versus R* for

various values of B
r
, including the calculated data points and the best fits. It can be seen

that the peak values of B
a

occur at a constant R$
c
E 1±45, irrespective of B

r
.

Truncating the curves at R*¯R$
c
, figure 9 is transformed into figure 10, in which we

plot B
r
versus R* for various values of B

a
, again including the calculated data points

and the best fits.
As we have explained earlier, since the drop is acoustically small, the sound intensity

is not affected by the presence of the drop. Hence the sound intensity can be evaluated
from the deformation before rotation starts. In other words, there is a one-to-one
correspondence between B

a
and the initial a}b. In figure 11, we show this

correspondence for the α¯ 0±25 drop.
Using the relation in figure 11, as well as the relation B

r
¯ 8Ω*2, figure 10 is

transformed into figure 12, in which we plot R* versus Ω* for various initial values of
a}b. Let us temporarily ignore the possibility of two-lobed bifurcation. The curve for
a}b¯ 1 is the familiar one representing the deformation as a function of the rotation
rate alone (Chandrasekhar 1965; Brown & Scriven 1980). For any initial a}b, if Ω*
increases from zero, R* increases until it reaches R$

c
, where the drop loses it

axisymmetric equilibrium and shatters. The horizontal line edc on the (R*,Ω)-plane
marks the position R*¯R$

c
where the drop loses its equilibrium. In particular, the

point e is the critical point for the non-rotating drop (Lee et al. 1991, 1994; Anilkumar
et al. 1993; Shi & Apfel 1995).

Now let us impose (4.34), which represents two-lobed bifurcation, onto figure 12.
The equation determines the bifurcation point on the R*,Ω* curve for each initial a}b.
The locus of these bifurcation points is the curve ab. In particular, point a is the
familiar bifurcation point for the drop that is free from acoustics (Chandrasekhar
1965; Brown & Scriven 1980). We end the curve at point b, because it becomes
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increasingly difficult to get more R*,Ω* curves beyond this point, by interpolation of
the finite number of data points given in figure 9. But it also happens, as seen in figure
12, that the points b and d are in the neighbourhood in which the regimes represented
by ab and cde merge.

The composite plot answers the question we have posed at the beginning of this
section as follows. Given a drop that is flattened acoustically before rotation, we locate
the point on the R*-axis that corresponds to the initial a}b. As the rotation rate Ω*
increases, we follow the R*,Ω* curve for that initial a}b to the right. Then one of the
two following things can happen. If the magnitude of the initial a}b is small enough,
the R*, Ω* curve can cut the curve ab such that the drop undergoes a two-lobed
bifurcation. On the other hand, if the magnitude of the initial a}b is large enough, the
R*,Ω* curve can cut the line de such that the drop ends up losing its axisymmetric
equilibrium and shatters. The segment cd of the line cde lies behind the curve ab, can
never be cut before two-lobed bifurcation occurs, and is thus irrelevant.
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F 12. Calculated R* versus Ω* for various initial a}b for α¯ 0±25. The curve ab is the locus
of bifurcation points for various R*,Ω* curves. The line cde marks the maximum R* beyond which
the drop loses axisymmetric equilibrium and shatters.

This picture is better expressed by plotting the critical rotation rate Ω$
c

versus
(a}b®1)¬100% as in figure 13. The curves corresponding to ab and cde in figure 12
are again shown here. It can be seen that the curve ab for two-lobed bifurcation, which
is a straight line according to (4.34), almost connects with the curve de for
axisymmetric loss of equilibrium, which is no longer a straight line in this
representation, around the points b and d. It is clear that with a little matching, the two
curves can merge smoothly with each other.

Note that the curve de cuts the (a}b®1)¬100% axis at a finite angle between 0° and
90°. This can be proved as follows. Let us denote the point R*¯R$

c
and B

r
¯ 0, near

the bottom right corner in figure 10, as X. Let us consider a contour of constant B
a
near

and around X (similar to the one for B
a
¯ 2±58). The decrease ∆B

a
in B

a
along the line
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continuation of de.

parallel to the B
r
axis from X to the contour is given by (∆B

a
)
"
£B

r
, according to (5.4),

or (∆B
a
)
"
¯C

"
Ω*#, since B

r
is proportional to Ω*#. The decrease ∆B

a
in B

a
along the

line antiparallel to the R*-axis from X to the contour is given by (∆B
a
)
#
¯C

#
(∆R*)#,

where ∆R* is the displacement in the negative R*-direction. Obviously, (∆B
a
)
"
¯

(∆B
a
)
#

since the drop is from X to the same contour. Therefore we have Ω*¯
(C

#
}C

"
)"/#∆R*. Furthermore, since the liquid drop is acoustically small, its shape is

close to ellipsoidal even at maximum flattening (R*¯R$
c
). Therefore we can use the

ellipsoidal approximation a}b¯R*$, such that ∆R* is related to the change ∆(a}b) in
a}b by ∆R*¯∆(a}b)}3R$#

c
. Finally, combining this with the earlier expression for Ω*,

we have Ω*¯ (C
#
}C

"
)"/#∆(a}b)}3R$#

c
. This proves that the curve de comes out from

the (a}b®1)¬100% axis at a finite angle.

6.2. Comparison with experiments and discussion

The curves ab and de in figure 12 have been imposed on figures 1–3 from USML-2. It
can be seen that the agreement is good except for the 102% drop from figure 3 (see §3).
For this particular drop, the two-lobed bifurcation point at Ω*¯ 0±25 is as predicted.
Then the drop backs off from bifurcation and suffers from more flattening until it loses
axisymmetric equilibrium at Ω*¯ 0±32. But the latter point does not lie along the
axisymmetric loss of equilibrium line.

Similarly, the curves ab and de in figure 13 have been imposed on figure 4 from both
USML-1 and USML-2. It can be seen more clearly than the agreement for two-lobed
bifurcation, according to the cluster of data points on the left-hand end, is excellent.
The agreement for the data points for axisymmetric loss of equilibrium, according to
the data points further to the right, is better for smaller a}b than for larger a}b. This
is a bit surprising, considering that the model for the two-lobed bifurcation of a
flattened drop involves a lot of simplification, whereas the theory for the axisymmetric
equilibrium of a drop is exact for the idealized situation of one single plane wave whose
vibration direction is along the rotation axis.

The discrepancy for larger a}b can be attributed to the following. While two-lobed
bifurcation is about energy, axisymmetric equilibrium is about the force balance
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among surface tension, acoustic stress, and centrifugal force at the highly curved
equator, characterized by the parameter B

a
(Lee et al. 1991, 1994; Anilkumar et al.

1993; Shi & Apfel 1995). It follows that it is B
a
, rather than a}b, that is the more

natural parameter to be plotted against Ω* in figure 4 or 13, in the regime for
axisymmetric loss of equilibrium. On the other hand, it is not practical to measure B

a

because it is meant for one wave while the system had three waves, and because the
sound pressure level is much more difficult to measure accurately than a}b.
Furthermore, with the three waves, the one-to-one correspondence between B

a
and a}b

as shown in figure 11 is blurred, since each value of a}b corresponds to three B
a
values

along the three axes. It is true that the B
a

along the axis of flattening is the most
important. But the situation is complicated by the fact that the region under
consideration is near the point (a}b®1)¬100%¯ 210, which corresponds to the peak
of the B

a
, a}b curve in figure 11.

With this background, the discrepancy is explained as follows. Each value of a}b
corresponds to approximately the B

a
along the axis of flattening. But this value of B

a

is changed a bit after being corrected for the presence of the B
a

along the other two
axes. There is a further correction due to the previously neglected small power loss, as
a result of the detuning effect of the flattened drop. The corrected B

a
in turn has to

correspond to a corrected a}b. Near the peak of the B
a
, a}b curve in figure 11, the value

of a}b is very sensitive to B
a
. Hence a little correction to B

a
leads to a large correction

to a}b. In other words, the ‘ true’ a}b can be different from the observed one by a large
correction.

But as seen in figure 11, as a}b moves away from the peak, it becomes less sensitive
to B

a
. Therefore, we can see that the agreement between theory and experiment

improves as the data points move away from the maximum (a}b®1)¬100% point in
figure 4. Allowing for the aforementioned inaccuracy associated with a}b, and except
for the 102% drop from figure 3, the experimental data are quite supportive of the
theory.

The (a}b®1)¬100%¯ 102% drop takes a special position in figure 4. It is
represented by its failed two-lobed bifurcation point Ω*¯ 0±25, although its demise
was due to an axisymmetric loss of equilibrium. The latter event, at Ω*¯ 0±32,
corresponds to a point that is significantly above the theoretical curve.

It is noted that the 102% drop is in the neighbourhood where the curve for two-
lobed bifurcation, and the curve for axisymmetric loss of equilibrium, are expected to
merge in figure 13. This means that the drop was very sensitive to little disturbances,
which could easily push it over from one regime to the other. Hence the drop should
have bifurcated at Ω*¯ 0±25 in the absence of disturbances. It is amazing that the
model (4.34) is applicable even when the flattening is so large.

What is not clear is why the drop did not lose equilibrium at R*¯R$
c
¯ 1±45 like

other similar drops, but at some higher R*, after it found itself in the regime of
axisymmetric loss of equilibrium.

7. Conclusion

Previous experiments (Wang et al. 1994a) showed that acoustic flattening lowers the
two-lobed bifurcation point of a rotating drop. In this work, we have conducted
systematic experimental and theoretical studies of the effect of acoustic flattening on
rotational bifurcation, which concerns neutral stability. We have also considered the
other extreme regime of the effect of rotation on the equilibrium of an acoustically
drastically flattened drop, which concerns loss of equilibrium. Theoretical models have
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been developed for the two effects and then put together to explain the whole situation.
The theoretical results agree well with the experiments.

In summary, we have explored a situation in which a regime of neutral stability
overlaps with a regime of equilibrium on the verge of collapsing, in the context of a
rotating drop subjected to acoustic flattening. Away from the overlap region,
equilibrium does not collapse where two-lobed bifurcation occurs. Likewise, there is no
two-lobed bifurcation where equilibrium is near collapse. This is just a matter of which
scenario has the chance to happen first for the given conditions. The borderline case
of the ‘confused’ 102% drop in figure 3 might be worthy of further study.

The analysis and theory described in this paper were carried out at the Center for
Microgravity Research and Applications at Vanderbilt University under contract with
the National Aeronautics and Space Administration.
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